Some new generalizations of Hardy's integral inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new generalizations of Hardy's integral inequality

We have studied some new generalizations of Hardy's integral inequality using the generalized Holder's inequality.

متن کامل

Some refinements and generalizations of Carleman's inequality

The constant is the best possible. There is a vast literature which deals with alternative proofs, various generalizations and extensions, and numerous variants and applications in analysis of inequality (1.1); see [1, 2, 3, 5, 7, 9, 8, 10, 13, 14, 15, 16, 17, 18, 19] and the references given therein. According to Hardy (see [6, Theorem 349]), Carleman’s inequality was generalized as follows. I...

متن کامل

On Bicheng-debnath’s Generalizations of Hardy’s Integral Inequality

We consider Hardy’s integral inequality and we obtain some new generalizations of Bicheng-Debnath’s recent results. We derive two distinguished classes of inequalities covering all admissible choices of parameter k from Hardy’s original relation. Moreover, we prove the constant factors involved in the right-hand sides of some particular inequalities from both classes to be the best possible, th...

متن کامل

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

Some Extensions of Hilbert’s Integral Inequality

In this paper we introduce a new extension of Hilbert's integral inequality with a best constant factor involving the hypergeometric function. The equivalent form and some examples will be given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2006

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms/2006/19013